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Likelihood

@ What's a likelihood? It's basically the probability of the data
conditional on a parameter value 6:

Pr (observed data|f),

but we think of this as a function of 8 and telling us something about
the plausibility of 6.

@ Computing likelihoods requires a model of what the probability of the
data is.

@ = In comparison to GMM estimation, Likelihood-based estimation
requires relatively strong assumptions about the data generating process.
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Connection to Bayesian inference

@ Bayes's rule:
Pr (data|f) Pr (6)

Pr (data)

@ Here, we directly make judgments about the (relative) probabilities of
different parameter values.

@ Pr(data|f) is a likelihood

@ Pr(data) is kind of irrelevant — it's the same for any 6

Pr (0|data) =

@ Pr(0) is a prior. If we ignore it or if we assume it's the same for all 0,
then we're just in the MLE world.
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Likelihood Function

o Let f (-|@) represent the probability density of the data conditional on a
parameter value 6. If data are independently and identically distributed,
the likelihood function is

where y; indicates individual observations (including both dependent
and explanatory variables).

@ We typically work with log-likelihood function because it's
computationally simpler:

InL(Bly) = Inf(y;|6).
i=1
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Maximum Likelihood Estimation

o Maximum likelihood estimation entails estimating @ by maximizing
the likelihood function:

A

0 = arg mein L(6ly) = arg mein InL(6ly)

@ Since the natural log function is strictly increasing, maximizing the
likelihood and maximizing log likelihood amount to the same thing.

Paul T. Scott NYU Stern Econometrics | Fall 2021 5/38



Likelihood of Normal Errors

@ Recall that PDF of the normal distribution is

fy (elo) = L =
N = Vore? TP\ 202

(for normal & with zero mean and variance o?)

@ Thus, log likelihood of an individual observation of ¢; is

]. 2 62
In for (gi]o) =-3 Ino —i—|n27r—|—0—’2
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Likelihood for Linear Regression Model

@ For linear model with £; mean-zero normal conditional on x;, the
likelihood of one observation is

(ﬂ U|Ylvx/) = f]\/'( —X,@‘O’)

noting that this requires the distribution of ¢; to be mean-zero normal
conditional on x;.

@ Assuming the data are i.i.d across observations, the conditional
likelihood of all the data is then

InL(B,0ly,X) = >iLqInfy (vi-x;Blo)
= —3 X0 <|na +In2m + (y:x5)>
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MLE for Linear Model |

@ Linear model log-likelihood:

n

7 a2
InL(B,oly, X) :_%Z <|n02+|n27r+(yi";j5>>

i=1 g
@ Focus on the term that involves 3:

n
292 > (i X§5)2
i=1

NB: maximizing the likelihood with respect to [ is equivalent to least
squares
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MLE for Linear Model Il

@ MLE estimate of 3 is the same as OLS.

@ MLE estimate of 02 comes from setting C% In L (B aly, X) =0:

n
52 -1 2
IMLE = E:ei

i=1

— v — ¥
where e; = y; — x:[3.

o Note that this is a bit different than the estimate of 02 we saw before:
n
§2 = (n— K)_1 z:e,-2
i=1

but the difference will be small in large samples. Recall: s2 is a unbiased
estimate of 02, so this means that the ML estimate is biased, but very
slightly in large samples.
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Asymptotic Efficiency

@ An estimator is asymptotically efficient if its asymptotic covariance
matrix is not larger than any other consistent estimator (i.e., standard
errors are as small as any other estimator).

@ It can be shown that (under regularity conditions), MLE is
asymptotically efficient.

@ Thus, MLE always performs well in large samples.
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Estimating Standard Errors |

@ The first way to estimate the asymptotic covariance matrix is to take
second derivatives of the likelihood function:

[ @ne(8) N
S TP

@ A second way is to compute the covariance of the first derivatives:

-1
[Z é,éf]

where

dlnf (x,-, 9)

90
o Either of the above is an asymptotically consistent estimator of

g =

4 (éMLE)- The latter is usually easier to compute.
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MLE as GMM

@ To maximize the likelihood function we set

) n ) n 8Inf(x,-,9)
n- g =n" — = =0.
;g:g, ;g: 5
i=1 i=1
Thus, maximum likelihood is a GMM estimator based on moments
dlnf x-,@
E (;') —0.

00

@ The GMM estimator for the asymptotic covariance matrix has the form

(rs—lr)_l,

but in the MLE context it can be shown that S and I' are asymptotically
equivalent, so they effectively cancel and we can use either Storr!

to estimate the variance.
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Conditional Likelihood |

@ Our starting point was that likelihoods were about the probability of the
data conditional on a parameter value:

In L (8|data) me (data;|6).

@ The above derivation was about ¢;, or the probability of y;|x;. But x;
might be a random variable, and it's also part of the data.

@ Do we need to consider the randomness in x;? In econometric models,
typically we don’t bother to explicitly model the randomness in
explanatory variables.
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Conditional Likelihood Il

@ Start with the full log likelihood function

n
> Inp(vi xle)
i=1

e We can decompose this using Pr (y;, x;) = Pr (y;|x;) Pr(x;):

n n
Z Inf (yi|x;, 0) + Z Ing (x;,d)
i=1 i=1

where 0 is the subset of « that dictates the distribution of y;|x; and & is
the subset of a that dictates the distribution of x;.

o If we're only interested in 8, then as long as there are no restrictions
between 0 and J, we can just focus on the first component of the
likelihood function (i.e., the conditional likelihood function)
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Conditional Likelihood I

@ We can decompose this using Pr (y;, x;) = Pr (yi|x;) Pr(x;):
n n
> Inf(yilx;, 0) + > Ing(x;, &)
i=1 i=1
where 0 is the subset of v that dictates the distribution of y;|x; and § is

the subset of o that dictates the distribution of x;.

@ Bottom line: you don't always have to specify and estimate a complete
data generating process to do maximum likelihood estimation.

@ Sometimes g and 4 are of interest in any case (e.g., for counterfactual
simulations).
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Endogeneity

@ Note that the likelihood framework does not solve the endogeneity
problem.

@ The consistency of MLE relies on the model being correctly specified,
and when ¢; and x; are correlated, the mean of ¢; is generally non-zero
conditional on x;.

e Full information maximum likelihood (FIML) and limited information
maximum likelihood (LIML) are the ML analog of IV estimators.
> Because they require specifying a distribution for the error terms (typically
normal) while 2SLS and GMM regression do not, ML-based IV estimators
are not popular.
» One advantage: LIML is more robust to weak instruments than 2SLS.
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ML Application: Censored Regression Model |

@ Censored data is a common problem

» Demand for a concert/sporting event with capacity constraints.
» Meters often only measure outcomes within a bounded range

(speedometers, thermometers, etc.)
> A test is scored on a bounded range (200-800), and we're thinking of the

test as marker for ability.
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ML Application 1:

Censored Regression Model Il

XiB+¢; latent variable (black dashed)
0 if y <0 (red line)
yi if y* >0 (red line)
1.0+
0.5
-1 1 /,/ 2 3 4‘& 5 6
-0.5 //

How would we go about estimating this model?

Paul T. Scott NYU Stern

Econometrics | Fall 2021

18/38



Background: Truncated Normal

@ Suppose v is distributed with standard normal PDF, but only for values

above a cutoff a.
o PDF will be
¢ (v)
1-9(a)
where ¢ is the standard normal PDF and & is standard normal CDF.

@ Note that we must divide by 1 —® (a) to make the PDF integrate to 1.
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Truncated Normal Moments |

Truncated Normal Properties

Suppose v ~ A (0, 1) has a normal distribution truncated with v > a. That
is, v takes values in (a, c0) and has PDF

¢ (v)
1-d(a)

Then,
Elv] = sl

()
= (1= 28 (8 -2)

The ratio of a normal density to its CDF, = é‘&)' is known as the inverse
Mills ratio.
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Truncated Normal Moments |l

o If original distribution is v ~ A (1, o), truncated for v > a, we get

similar results:

Elv] = ot ok
Var [V] — 02 (1_ B(a) o(a) —a))

_ ap
where @ = -

o If truncation is for v < a, then we replace 1%:?()1) with —ﬁ((z))
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Censored Normal

@ Suppose v* NN(/,L,O'Q). Consider

v ifv*>a
v = _
a if v¥ <a

@ Note: v will have the normal PDF above the cutoff a, and there will be
a point mass at v = a.

o Pr(v=a)=®(ZH) where & is the standard normal CDF.
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Censored Normal Mean

@ Censored Normal will have mean

E(v) = E(vlv=a)Pr(v=a)+E(vlv>a)Pr(v>a)
= ad+ E(vlv>a)(l-9)
= ad+ (p+o))(1-9)

where = 157k, ® = @ (a), o = 22

@ We can similarly derive the variance from the truncated normal variance

Var (v) = 02 (1= ®) [(1-6) + (a= A)? &

where § = \2 - \a.
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Censored Regression

@ Let’s now return to censored regression framework:

yi= xiB+e¢;
yi= 0 ify/ <0
yi= y’ if y* >0

@ What do you expect to happen if we estimate with OLS?
@ What if we drop the observations with y; = 07
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Censored Regression: Bias in OLS

yi = xiB+ej
yi= 0 if yfk <0
Yi= i if y*>0

o If we run OLS on the censored regression data, we are essentially

estimating
i =xiB+e;

x __ 3 . ¥
where e =¢; + y; -y

o ls 57 uncorrelated with x as we would need for OLS to deliver an
unbiased estimate?
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Censored Regression: ML Estimation (Tobit)

o Log likelihood equation:
(y

) ga-e(%)

e Maximum likelihood here will give consistent (and asymptotically
efficient) estimates of all parameters.

1
InL=> - 5 In(27) 4 Ino? +
yi>0

@ This is known as a tobit regression.

@ These mathematical tools are also what's behind the Heckman
selection correction to deal with sample selection bias.
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Application 2: Finite Mixture Models

X - observed variables

©

¢ - unobserved variables assumed to have finite support, Z

©

0 parameters of interest

p (x;, ¢;|0) - complete data likelihood for ith observation

©

p (x;|0) - incomplete data likelihood for ith observation:

p(x;0) = Zp (x;, z|6)

zeZ

@ gj; (0) - expectation of incomplete data

qiz (0) = Pr (¢ = z|x;, 0)
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Example 1: Mixture of Normals

© 0= (p1,p2 0 0)

o If z =1, then x; ~ N (u1,0)

o If z; =2, then x; ~ N (up, 0)

e Pr(zi=1)=uy
Density
ozs} S
- o1
0
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Example 2: collusion (Porter, 1983)

@ Rob Porter (1983), " A Study of Cartel Stability: The Joint Executive
Committee, 1880-1886"

InQ: = ag+ajlnPs+ axDe + Upt
InP: = Bo+B1InQt+ B2St + B3lt + Uyt

where
» D;: demand shifters
> S;: supply shifters
> It € {0,1} indicating whether the cartel was in a price war or not
@ In previous notation,
» xt = (Qt, Pt, D¢, St)

>z = It
> 0 f ((]{v B)
» to deal with simultaneity, likelihood function p(x;, ¢;|6) is FIML
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Complete and incomplete data likelihoods

The incomplete data log-likelihood function or unconditional log-likelihood
function for a mixture model involves a sum within an expectation, which
makes it very hard to maximize with standard optimization algorithms:

InL(x|0) = Z In (Z p (x;, z\@)) :
i z
The EM algorithm is based on the (expected) complete data log-likelihood

function:
X C]|‘9 qulz X/v2\9))-

Note that @ would simply be the log-likelihood function if { were observed.
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EM Algorithm overview

@ The EM algorithm starts with some initial guess for 6(0)

@ In the E-step, we calculate expectations of the g's conditional on the
parameter values:

1z

gl = Pr (G = 2100m D).

@ In the M-step, we maximize the value of the complete data likelihood
function:

p(m) — mgaxQ (x, q(m)\é) .

@ The EM Algorithm iteratively applies E and M steps until 6(m)
converges.
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EM Algorithm overview

@ The E and M steps are often easy computationally (in contrast to
maximization of incomplete data likelihood function).

e Each EM iteration increases Q <x, q(’")\H(m)>, and
L(x]6) > Q (x, q(m)w(m)).

@ Thus, iterating on the E and M steps will monotonically increase
InL <x|9(m)), and (M) will generally converge to a local maximum of
InL(x|0).

o = EM Algorithm transforms a hard optimization problem into a series
of easy optimization problems
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Estimation of Mixture of Normals |

0 = (p1, p2,0, 1)

If z =1, then x; ~ N (u1,0)
If z; =2, then x; ~ N (up,0)
Pr(zi=1)=o

® 6 o o

In the E step, we just apply Bayes's Theorem to find g's
ql(lm) = Pr (Z,' = 1|X,',9(m)> =
o (s

T o) ool ()

where f (x|u, o) is the density at x of the normal distribution with mean
and standard deviation 2.
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Estimation of Mixture of Normals Il

@ In the M step, maximizing the complete data likelihood function
amounts to taking weighted means:

ngnﬂ) = :E:: qE;n))(i

S(m) _ | 2z i ay” (xi = iz)”
ZE:Z 22:[ qf;n)

<
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Estimation of example 1: mixture of normals

@ Note: in a mixture model with covariates that enter linearly, the M step
involves weighted OLS instead of a weighted mean

@ Bottom line: E and M step are both easy computationally, so iterating
on them goes quickly.

@ In general, the EM algorithm can stop at local maxima, so some care is
needed to ensure a global optimum is attained (e.g., multiple starting
points).

o Alternative: MCMC estimation.
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Model Selection: Likelihood Ratio

@ When comparing nested models, the likelihood ratio test is simple and
powerful

o Let O be a vector of parameters to be estimated

> éU is the ML estimate for the full model
> OR is the ML estimate for a restricted model (e.g., with a couple elements
fixed to zero)

o Likelihood ratio:
L <0R\data)

- L <9U\data> ’

which will always be less than one.
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Model Selection: Likelihood Ratio Test

@ Null hypothesis Hy: the restricted model is correct.

@ Given regularity conditions and Hy, then asymptotically asymptotic
distribution of
~2In A ~ X3,

where X’% is chi-squared distribution with degrees of freedom equal to
number of restrictions.

@ Note similarly to testing restrictions in linear models, but no need for
linearity and computationally simpler than F test.
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Model Selection: Information Criteria

o Just as R? always increases as we add parameters, so does the likelihood.

@ When comparing models with different numbers of parameters, we
should penalize more complex models. Intuitively, evaluating models
based on likelihood without a penalty will lead to over fitting the data.

@ Two popular criteria for selecting models that reward parsimony:

Akaike information criterion = -2InL(0]y) + 2K
Bayes information criterion = -2InL(f]y)+ KlInn

@ To compare two or more models using the AIC (BIC), compute each
model's AIC (BIC) score, and select the model with the lowest score
(highest penalized likelihood).

@ Note: these can be used to compare non-nested models as well as
nested models.
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